skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Nanpeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. California has committed to ambitious decarbonization targets across multiple sectors, including decarbonizing the electrical grid by 2045. In addition, the medium- and heavy-duty truck fleets are expected to see rapid electrification over the next two decades. Considering these two pathways in tandem is critical for ensuring cost optimality and reliable power system operation. In particular, we examine the potential cost savings of electrical generation infrastructure by enabling flexible charging and bidirectional charging for these trucks. We also examine costs adjacent to enabling these services, such as charger upgrades and battery degradation. We deploy a large mixed-integer decarbonization planning model to quantify the costs associated with the electric generation decarbonization pathway. Example scenarios governing truck driving and charging behaviors are implemented to reveal the sensitivity of temporal driving patterns. Our experiments show that cost savings on the order of multiple billions of dollars are possible by enabling flexible and bidirectional charging in medium- and heavy-duty trucks in California. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service. Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of frequency regulation provision. We present PowerMorph , a tight QoS-aware data center power-reshaping framework, which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph  is using “complementary workload” as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net profit. 
    more » « less
  3. Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency events on the utility side, micro-grids can disconnect from the main grid and operate autonomously while providing a continued supply of power to local customers. With the ever-increasing penetration of renewable generation, however, operations of micro-grids become increasingly complicated because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently, thereby leading to fast degradation of expensive tap-changer transformers. In the islanding mode, the difficulties also come from the drop in voltage and frequency upon disconnecting from the main grid. To appropriately model the above, non-linear AC power flow constraints are necessary. Computationally, the discrete nature of tap-changer operations and the stochasticity caused by renewables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above computational difficulties, the main principles of the recently developed “l1-proximal” Surrogate Lagrangian Relaxation are extended. Testing results based on the nine-bus system demonstrate the efficiency of the method to obtain the exact feasible solutions for micro-grid operations, thereby avoiding approximations inherent to existing methods; in particular, fast convergence of the method to feasible solutions is demonstrated. It is also demonstrated that through the optimization, the number of tap changes is drastically reduced, and the method is capable of efficiently handling networks with meshed topologies. 
    more » « less
  4. Advanced spatio-temporal electric load modeling and accurate spatio-temporal load forecast are essential to both short-term operation and long-term planning of power systems. This paper explores the spatio-temporal dependencies of electric load time series. The Southern California feeder load data show that feeders which are spatially close to each other share a more similar load pattern than those located further apart. This finding motivates us to develop the vector autoregressive model and the extended dynamic spatio-temporal model to emulate the spatio-temporal correlations of the real-world electric load time series. The testing results show that both models effectively capture the spatio-temporal patterns in the real-world electric load time series. Compared to the traditional vector autoregressive model, the proposed extended dynamic spatio-temporal model not only provides more accurate spatio-temporal electric load forecast but also obtains a parsimonious description of the high dimensional dataset. 
    more » « less
  5. This paper presents a three-phase iterative direct current optimal power flow (DCOPF) algorithm with fictitious nodal demand. Power losses and realistic distribution system operating constraints such as line flow limits and phase imbalance limits are carefully modeled in the DCOPF formulation. The definition of locational marginal prices (LMPs) is extended to three-phase distribution systems. The three-phase LMP decomposition is derived based on the Lagrangian function. The proposed algorithm is implemented in an IEEE test case and compared with three-phase alternating current optimal power flow (ACOPF) algorithm. The simulation results show that the proposed DCOPF algorithm is effective in coordinating the operations of distributed energy resources (DERs) and managing phase imbalance and thermal overloading. The proposed iterative three-phase DCOPF algorithm provides not only a computationally efficient solution but also a good approximation to the ACOPF solution. 
    more » « less
  6. This paper proposes the risk-limiting unit commitment (RLUC) as the operational method to address the uncertainties in the smart grid with intelligent periphery (GRIP). Three key requirements are identified for the RLUC in GRIP. The first one requires the RLUC to be modeled as a multi-stage multi-period unit commitment problem considering power trades, operational constraints, and operational risks. The second one requires the RLUC considering the conditional prediction to achieve a globally optimal solution. It is addressed by using conditional probability in a scenario-based form. The last one requires the risk index in the RLUC to be both valid and computationally friendly, and it is tackled by the utilization of a coherent risk index and the mathematical proof of a risk chain theorem. Finally, the comprehensive RLUC in GRIP satisfying all the three requirements is solved by an equivalent transformation into a mixed integer piecewise linear programming problem. Case studies on a 9-bus system, a realistic provincial power system, and a regional power grid in China demonstrate the advantages of the proposed RLUC in GRIP. 
    more » « less